On the first set $J_{n}(\alpha, \beta, K ; x)$ of Bi-orthogonal Polynomials suggested by the Jacobi Polynomials

N. M. Kavathekar1*, G.A.Dhanorkar ${ }^{2}$, Vidhyadhar Nalawade ${ }^{3}$, T.B.Jagtap ${ }^{4}$
1 Department of Mathematics, Mudhoji College, Phaltan, Dist-Satara (M.S.) India.
2 Department of Mathematics, K.B.P. College Vashi, Navi Mumbai, India.
3 S. G. R. G. Shinde Mahavidyalaya, Paranda, India
4 Department of Mathematics, Y. C. Institute of Science, Satara (MS) India

Abstract

Madhekar and Thakare succeeded in constructing a pair of bi-orthogonal polynomials $J_{n}(\alpha, \beta, k ; x)$ and $k_{n}(\alpha, \beta, k ; x)$ that are suggested by Jacobi polynomials. In the sense that for $k=1$ both these polynomials reduces to Jacobi polynomials. Madhekar and Thakare obtained recurrence relations, operational formulae, generating functions, bi-orthogonality, multilinear and multilateral generating function involving bi-orthogonal polynomials suggested by Jacobi polynomials. Dhanorkar and Kavthekar [3] worked on biorthogonal polynomials for the weight function $\frac{|x|^{2 \mu}}{\left(-x^{2} q^{2} ; q^{2}\right)_{\infty}}$. In the present paper we obtained some interesting results with some particular cases for the first set $J_{n}(\alpha, \beta, k: x)$. In which generating function is obtained from hypergeometric function and Manocha [8]. Also find recurrence relation from Rainville [10].

\section*{Keywords and phrases:}

Generating Function Biorthogonal polynomials, Recurrence Relations, generalized hypergeometric function.

2020 Mathematics subject classification: 33C45, 33E50, 33C67, 33C20

1 Introduction:

Madhkkar and Thakare [7] constructed following pair of polynomials

$$
\begin{equation*}
J_{n}(\alpha, \beta, k ; x)=\frac{(1+\alpha) k_{n}}{n!} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \frac{(1+\alpha+\beta+n)_{k_{j}}}{(1+\alpha)_{k_{j}}}\left(\frac{1-x}{2}\right)^{k_{j}} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{gather*}
k_{n}(\alpha, \beta, k ; x)=\sum_{r=0}^{n} \sum_{s=0}^{r}(-1)^{r+s}\binom{r}{s} \frac{(1+\beta)_{n}}{n!r!(1+\beta)_{n-r}} \\
\left(\frac{s+\alpha+1}{k}\right)_{n}\left(\frac{x-1}{2}\right)^{r}\left(\frac{x+1}{2}\right)^{n-r} \tag{1.2}
\end{gather*}
$$

They showed that first set $\left\{U_{n}(\alpha, \beta, k ; x)\right\}$ is bi-orthogonal to the second set $\left\{k_{n}(\alpha, \beta, k ; x)\right\}$ with respect to the weight function $(1-x)^{\alpha}(1+x)^{\beta}$ over the interval $(-1,1)$ where $\alpha, \beta>-1$ and k is a positive integer. For $k=1$ both $J_{n}(\alpha, \beta, k ; x)$ and $k_{n}(\alpha, \beta, k ; x)$ reduces to the Jacobi polynomials $P_{n}^{\alpha, \beta}(x)$

Madhekar and Thakare [5, 6, 7] and Thakare and Madhekar [13, 14] obtained biorthogonality, operational formulae and generating functions of these polynomials.

The polynomials $J_{n}(\alpha, \beta, k ; x)$ and $k_{n}(\alpha, \beta, k ; x)$ are related to $Z_{n}^{\alpha}(x ; k)$ and $Y_{n}^{\alpha}(x, k)$ respectively by the following relations

$$
\begin{align*}
& \lim _{\beta \rightarrow \infty} J_{n}\left(\alpha, \beta, k ; 1-\frac{2 x}{\beta}\right)=Z_{n}^{\alpha}(x ; k) \tag{1.3}\\
& \lim _{\beta \rightarrow \infty} k_{n}\left(\alpha, \beta, k ; 1-\frac{2 x}{\beta}\right)=Y_{n}^{\alpha}(x ; k) \tag{1.4}
\end{align*}
$$

where $Z_{n}^{\alpha}(x ; k)$ and $Y_{n}^{\alpha}(x ; k)$ are the konhauser biorthogonal polynomials [4].
In the present paper we obtained some more interesting results for the first set $\left\{J_{n}(\alpha, \beta, k ; x)\right\}$ and some particular cases are also noted.

2 Generating Functions

The generalized hypergeometric function is defined by

$$
\left.p F_{q[}\right] \begin{aligned}
& \alpha_{1}, \alpha_{2}, \ldots, \alpha_{p} \\
& \beta_{1}, \beta_{2}, \ldots, \beta_{q} Z=\sum \text { undOvrn }=
\end{aligned}
$$

$0 \infty(\alpha 1) n(\alpha 2) n \ldots(\alpha p) n(\beta 1) n(\beta 1) n \ldots(\beta q) n Z n n!(2.1)$
Here p and q are positive integers or zero. $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$ are numerator parameters and $\beta_{1}, \beta_{2}, \ldots, \beta_{q}$ are denominator parmeters. They may be real or complex and $\beta_{j} \neq 0,-1,-2, \ldots ; j=1,2, \ldots, 9$ and Z is variable.

From definition (1.1) we easily observed that the polynomial $J_{n}(\alpha, \beta, k ; x)$ has following hypergeometric representation.

$$
J_{n}(\alpha, \beta, k ; x)=\frac{(1+\alpha) k n}{n!}{ }_{k+1} F_{k}\left[\begin{array}{c}
-n ; \Delta(k, 1+\alpha+\beta+n) ;\left(\frac{1-x}{2}\right)^{k} \tag{2.2}\\
\Delta(k, 1+\alpha) ;
\end{array}\right]
$$

where $\Delta(m, \delta)$ stands for the sequence of m parameters

$$
\frac{\delta}{m}, \frac{\delta+1}{m}, \ldots, \frac{\delta+m-1}{m}, m \geq 1
$$

Chaundy [[1], p-62, equation (2.5)] gave the generating relation

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{n!}{ }_{p+1} F_{q}\left[\begin{array}{c}
-n ; \alpha_{1}, \ldots, \alpha_{p} ; \\
\beta_{1}, \ldots, \beta_{q} ;
\end{array} x\right] t^{n}= \\
&(1-t)^{-\lambda}{ }_{p+1} F_{q} {\left[\begin{array}{l}
\lambda ; \alpha_{1}, \ldots, \alpha_{p} \frac{x t}{} \\
\beta_{1}, \ldots, \beta_{q} \\
\\
\\
\\
\end{array} \quad \begin{array}{l}
\text { whereve }|t| \leq 1
\end{array}\right] }
\end{align*}
$$

Specialising the parameters in (2.3) in view of hypergeometric representation (2.2) for $J_{n}(\alpha, \beta, k ; x)$ we get the generating relation.

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{(1+\alpha)_{k n}} J_{n}(\alpha, \beta-n, k ; x) t^{n}= \\
& \\
& (1-t)^{-\lambda}{ }_{k+1} F_{k}\left[\begin{array}{cc}
\lambda ; \Delta(k, 1+\alpha+\beta) ; & 2^{-k}(1-x)^{k} \frac{t}{(t-1)} \\
\Delta(k, 1+\alpha) ; & (|t|<1)
\end{array}\right. \tag{2.4}
\end{align*}
$$

Replacing x by $1-\frac{2 x}{\beta}$ and using the relation (1.3) we obtain the generating function for $Z_{n}^{\alpha}(x ; k)$ obtained by Srivastava [[10], p-245, equation 3.19].

$$
\sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{(\alpha+1)_{k n}} Z_{n}^{\alpha}(x ; k) t^{n}=(1-t)^{-\lambda}{ }_{1} F_{k}\left[\begin{array}{l}
\lambda ; \tag{2.5}\\
\left.\Delta(k, \alpha+1) ; \frac{x^{k} t}{(t-1) k^{k}}\right]
\end{array}\right]
$$

see also Srivastava and Manocha [[12], p-198, problem 66].
Replacing t by t / λ in the formula (2.4) and taking $\lambda \rightarrow \infty$ we get the following generating function obtained by Madhekar and Thakare [[5], p-421, equation (14)]

$$
\sum_{n=0}^{\infty} \frac{J_{n}(\alpha, \beta-n, k ; x)}{(1+\alpha)_{k n}} t^{n}=e^{t}{ }_{k} F_{k}\left[\begin{array}{l}
\Delta(k, 1+\alpha+\beta) ; \tag{2.6}\\
\Delta(k, 1+\alpha) ;
\end{array}-t\left(\frac{1-x}{2}\right)^{k}\right]
$$

Replacing x by $1-2 x$ and putting $k=1$ in (2.6) we get known generating function of Jacobi polynomials due to Srivastava and Joshi [[11], p-22, equation (4.6)]

$$
\sum_{n=0}^{\infty} \frac{p_{n}^{(\alpha, \beta-n)}(1-2 x) \cdot t^{n}}{(1+\alpha)_{n}}=e^{t}{ }_{1} F_{1}\left[\begin{array}{l}
1+\alpha+\beta ; \tag{2.7}\\
1+\alpha ;
\end{array}\right]
$$

putting $k=1$ in (2.6) and using Kummer's transformation.

$$
{ }_{1} F_{1}(a ; c ; z)=e^{z}{ }_{1} F_{1}(c-a, c,-z)
$$

we get Feldheim's formula [[2], p-120, equation(12)]

$$
\sum_{n=0}^{\infty} \frac{p_{n}^{(\alpha, \beta-n)}(x)}{(1+\alpha)_{n}} t^{n}=e^{(x+1) t / 2}{ }_{1} F_{1}\left[\begin{array}{l}
-\beta ; \tag{2.8}\\
1+\alpha ;
\end{array} \frac{t(1-x)}{2}\right]
$$

see also Shrivastava and Manocha [[12], p-170, problem (19)] Now reversing the orders of summation we get

$$
\begin{align*}
J_{n}(\alpha, \beta, k ; x)= & \frac{(1+\alpha)_{k n}}{n!}(-1)^{n}\left(\frac{1-x}{2}\right)^{k n} \\
& \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \frac{(1+\alpha+\beta+n)_{k n-k j}}{(1+\alpha)_{k n-k j}}\left(\frac{1-x}{2}\right)^{k j} \tag{2.9}
\end{align*}
$$

Now replacing α by $\alpha-k n, \beta$ by $\beta-n$ in (2.9) and using the result due to Rainville [[9], $\mathrm{p}-32$, problme (8)]

$$
(\alpha)_{n-k}=\frac{(-1)^{k}(\alpha)_{n}}{(1-\alpha-n)_{k}}
$$

we get
$J_{n}(\alpha-k n, \beta-n, k ; x)=(-\alpha-\beta)_{k n}(-1)^{n}\left(\frac{x-1}{2}\right)^{k n} \quad{ }_{k+1} F_{k}\left[\begin{array}{l}-n, \Delta(k,-\alpha) ; \\ \Delta(k,-\alpha-\beta) ;\end{array}(2 / 1-x)^{k}\right]$

Specialising (2.3) in view of (2.10) we obtain the following generating function for the polynomials $J_{n}(\alpha, \beta, k ; x)$

$$
\sum_{n=0}^{\infty} \frac{(\lambda)_{n} J_{n}(\alpha-k n, \beta-n, k ; x) t^{n}}{(-\alpha-\beta)_{k n}}=\left[1+t\left(\frac{x-1}{2}\right)^{k}\right]^{-\lambda} \quad k+1 F_{k}\left[\begin{array}{l}
\lambda, \Delta(k,-\alpha) ; \tag{2.11}\\
\Delta(k,-\alpha-\beta) ; \frac{(-1)^{k} t}{1+t\left(\frac{x-1}{2}\right)^{k}}
\end{array}\right]
$$

For $k=1$ the equation (2.11) reduces to the generating function for Jacobi polynomials $p_{n}^{\alpha, \beta}(x)$ given by Manocha [[8], equation (1.4)]

$$
\sum_{n=0}^{\infty} \frac{(\lambda)_{n} p_{n}^{\alpha-n, \beta-n}(x) t^{n}}{(-\alpha-\beta)_{k n}}=\left[1+\left(\frac{x-1}{2}\right) t\right]^{-\lambda} \quad 2 F_{1}\left[\begin{array}{l}
\lambda,-\alpha ; \tag{2.12}\\
-\alpha-\text { beta; } \frac{-t}{1+\left(\frac{x-1}{2}\right) t}
\end{array}\right]
$$

Replace t by t / λ and taking limit $\lambda \rightarrow \infty$ in equation (2.11) we get

$$
\left.\sum_{n=0}^{\infty} \frac{J_{n}(\alpha-k n, \beta-n, k ; x)}{(-\alpha-\beta)_{k n}} t^{n}=\exp \left[-t\left(\frac{x-1}{2}\right)^{k}\right] \quad{ }_{k} F_{k}\left[\begin{array}{l}
\Delta(k,-\alpha) ; \tag{2.13}\\
\Delta(k,-\alpha-\beta) ;
\end{array}{ }^{k}-1\right)^{k} t\right]
$$

putting $k=1$ the equation (2.13) reduces to the following generating function

$$
\sum_{n=0}^{\infty} \frac{1}{(-\alpha-\beta)_{n}} p_{n}^{\alpha-n, \beta-n}(x) t^{n}=\exp \left[-t\left(\frac{x-1}{2}\right)\right] \quad 1_{1} F_{1}\left[\begin{array}{l}
-\alpha ; \tag{2.14}\\
-\alpha-\beta ;-t
\end{array}\right]
$$

Replace t by ($-t$), α by β and β by α in equation (2.14) we obtain

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(-\alpha-\beta)_{n}} p_{n}^{\beta-n, \alpha-n}(x) t^{n}=\exp \left[t\left(\frac{x-1}{2}\right)\right]_{1} F_{1}\left[\begin{array}{l}
-\beta ; \tag{2.15}\\
-\alpha-\beta ;
\end{array}\right]
$$

Now using the result from Rainville [[10], p-256]

$$
p_{n}^{\alpha, \beta}(-x)=(-1)^{n} p_{n}^{\beta, \alpha}(x)
$$

we obtain

$$
\sum_{n=0}^{\infty} \frac{p_{n}^{\alpha-n, \beta-n}(-x) t^{n}}{(-\alpha-\beta)_{n}}=\exp \left[t\left(\frac{x-1}{2}\right)\right]_{1} F_{1}\left[\begin{array}{l}
-\beta ; \tag{2.16}\\
-\alpha-\beta ;
\end{array}\right]
$$

Now replcing x by $-x$ in the equation (2.16) we get

$$
\sum_{n=0}^{\infty} \frac{p_{n}^{\alpha-n, \beta_{n}}(x)}{(-\alpha-\beta)_{n}} t^{n}=\exp \left[-t\left(\frac{x+1}{2}\right)\right]_{1} F_{1}\left[\begin{array}{l}
-\beta ; \tag{2.17}\\
-\alpha-\beta ;
\end{array}\right]
$$

The generating function (2.17) is due to Manocha [8].

3. Recurrence Relation

Consider the following formula from Rainville [[9], p-107, problem 12]

$$
\frac{d}{d z_{p}} F_{q}\left[\begin{array}{l}
a_{1}, \ldots, a_{p} ; \tag{3.1}\\
b_{1}, \ldots, b_{q} ;
\end{array}\right]=\frac{\prod_{m=1}^{p} a_{m}}{\prod_{j=1}^{q} b_{j}}{ }_{p} \quad F_{q}\left[\begin{array}{l}
a_{1}+1, \ldots, a_{p}+1 ; \\
b_{1}+1, \ldots, b_{q}+1 ;
\end{array}\right]
$$

From (2.2) we have

$$
\frac{d}{d x} J_{n}(\alpha, \beta, k ; x)=\frac{d}{d x} \frac{(1+\alpha)_{k n}}{n!} F_{k+1}\left[\begin{array}{l}
\left.-n ; \Delta(k, 1+\alpha+\beta+n) ;\left(\frac{1-x}{2}\right)^{k}\right] \\
\Delta(k, 1+\alpha) ;
\end{array}\right.
$$

using (3.1) we get

$$
\begin{aligned}
& \frac{d}{d z} J_{n}(\alpha, \beta, k ; x)=\frac{(1+\alpha)_{k n}}{(n-1)!} k 2^{-k}(1-x)^{k-1} \frac{(1+\alpha+\beta+n)}{(1+\alpha)_{k}} \\
& k+1 F_{k}\left[\begin{array}{l}
-n+1, \Delta(k, 1+\alpha+\beta+k+n) ;\left(\frac{1-x}{2}\right)^{k} \\
\Delta(k, 1+\alpha+k) ;
\end{array}\right.
\end{aligned}
$$

In view of hypergeometric representation of $J_{n}(\alpha, \beta, k ; x)$ we obtain the following recurrence relation

$$
\begin{equation*}
D\left[J_{n}(\alpha, \beta, k ; x)\right]=k .2^{-k}(1-x)^{k-1}(1+\alpha+\beta+n)_{k} J_{n-1}(\alpha+k, \beta+1, k ; x) \tag{3.2}
\end{equation*}
$$

where $D=\frac{d}{d x}$ The equation (3.2) can be written as

$$
(1-x)^{1-k} D\left[J_{n}(\alpha, \beta, k ; x)\right]=k \cdot 2^{-k}(1+\alpha+\beta+n)_{k} J_{n-1}(\alpha+k, \beta+1, k ; x)
$$

It is not difficult to observe that

$$
\begin{align*}
{\left[(1-x)^{1-k} D\right]^{m} J_{n}(\alpha, \beta, k ; x)=} & k^{m} 2^{-m k} \\
& \prod_{i=0}^{m-1}(1+\alpha+\beta+n+k i)_{k} J_{n-m}(\alpha+m k, \beta+m, k ; x) \tag{3.3}
\end{align*}
$$

where $n \geq m>0$
For $k=1$ the equation (3.3) reduces to the result for Jacobi polynomials

$$
\begin{equation*}
D^{m} p_{n}^{(\alpha, \beta)}(x)=2^{-m}(1+\alpha+\beta+n)_{m} p_{n-m}^{(\alpha+m, \beta+m)}(x) \tag{3.4}
\end{equation*}
$$

see Rainville [[9], p-263, equation (3)]
Madhekar and Thakare [[5], p-421, equation (16) \& (17)] obtained following recurrence relation for $J_{n}(\alpha, \beta, k ; x)$

$$
\begin{gather*}
(x-1) D J_{n}(\alpha, \beta, k ; x)=n k J_{n}(\alpha, \beta, k ; x)-k(k n-k+\alpha+1)_{k} \tag{3.5}\\
J_{n-1}(\alpha, \beta+1, k ; x) \\
(x-1) D J_{n}(\alpha, \beta, k ; x)=(k n+\alpha) J_{n}(\alpha-1, \beta+1, k ; x)-\alpha J_{n}(\alpha, \beta, k ; x) \tag{3.6}
\end{gather*}
$$

Eliminating $(x-1) D J_{n}(\alpha, \beta, k ; x)$ from (3.5) and (3.6) we can easily obtain

$$
\begin{align*}
J_{n}(\alpha, \beta, k ; x)= & k(1+\alpha+n k-k)_{k-1} J_{n-1}(\alpha, \beta+1, k, x) \tag{3.7}\\
& +J_{n}(\alpha-1, \beta+1, k ; x)
\end{align*}
$$

Now using (3.2) in (3.5) we have

$$
\begin{aligned}
& -(1-x)^{k} 2^{-k}(1+\alpha+\beta+n)_{k} J_{n-1}(\alpha+k, \beta+1, k ; x) \\
& =n J_{n}(\alpha, \beta, k ; x)-(k n-k+\alpha+1)_{k} J_{n-1}(\alpha, \beta+1, k ; x)
\end{aligned}
$$

Replacing n by $(n+1)$ and β by $(\beta-1)$ in above equation we get the following recurrence relation

$$
\begin{align*}
& (1-x)^{k} 2^{-k}(1+\alpha+\beta+n)_{k} J_{n}(\alpha+k, \beta, k ; x) \\
& =(1+\alpha+k n)_{k} J_{n}^{k}(\alpha, \beta, k ; x)-(n+1) J_{n+1}(\alpha, \beta-1, k ; x) \tag{3.8}
\end{align*}
$$

Similarly using (3.2) in (3.6) we get another recurrence relation for $J_{n}(\alpha, \beta, k ; x)$

$$
\begin{align*}
& k .2^{-k}(1-x)^{k}(1+\alpha+\beta+n)_{k} J_{n-1}(\alpha+k, \beta+1, k ; x) \tag{3.9}\\
& \quad=\alpha J_{n}(\alpha, \beta, k ; x)-(k n+\alpha) J_{n}(\alpha-1, \beta+1, k ; x)
\end{align*}
$$

References

[1] T. W. Chaundy : An extension of hypergeometric functions, Quart, Jour. Math, Oxford Ser, 14 (1943) 55-78.
[2] E. Feldheim : Relations entre les polynomes de Jacobi Laguerre et Hermite, Acta Math, 74, (1941), 117-138.
[3] N. M. Kavathekar, Gajanan A. Dhanorkar, T.B.Jagtap: Biorthogonal polynomials for the weight function.., Eur. Chem. Bull. 2023, 12 (S3), 6857 - 6865. DOI: 10.31838/ecb/2023.12.s3.768
[4] J. D. E Konhauser: Bi-orthogonal polynomials suggested by the Laguerre polynomials, Jour, Math, 21 (1967), 303-314.
[5] H. C. Madhekar and N. K. Thakare : Biorthogonal polynomials suggested by the Jacobi polynomials, Jour, Math, 100, (1982), 417-424.
[6] H. C. Madhekar and N. k. Thakare : On obtaining multilateral generating functions, Indian Journal Pure Appl. Math., 15(2), (1984), 149-160.
[7] H. C. Madhekar and N. k. Thakare : Multilateral generating functions for bi-orthogonal polynomials suggested by Jacobi polynomials, (Indian Jour. Pure and Appl. Math.), 15(2), (1984), 161-170.
[8] H. L. Manocha : Some bilinear generating functions for Jacobi polynomials, Proc. Camb. Phil. Soc., 63, (1967)m 457-459.
[9] Earl D. Rainville : Special Functions, The Macmillan Company, New York, (1960). Reprinted by Chelsea Publ. Co. Bronx, New York, (1971).
[10] H. M. Srivastava : Some biorthogonal polynomials suggested by the Laguerre polynomials, Pacific Jour. Math., 98, (1982), 235-250.
[11] H. M. Srivastava and C. M. Joshi : Certain double Whittaker transforms of generalised hypergeometric functions, Yokahama Math. Jour., 15, (1967), 17-32.
[12] H. M. Srivastava and H. L. Manocha: A Treatise on Generating Functions, Ellis Harwood Ltd, (1984).
[13] N. K. Thakare and H. C. Madhekar : On the second set $\left\{k_{n}(a, b, k ; x)\right\}$ of Biorthogonal polynomials suggested by Jacobi polynomials, Bulletin of the Institute of Mathematics Academia Sinica, 12(4), (1984), 413-422.
[14] N. K. Thakare and H. C. Madhekar : Results involving a pair of biorthogonal polynomials related to Jacobi polynomial, Bull. Inst. Math. Academia Sinica, 14(3), (1986), 251-265.

